Abstract
A backward semi-Lagrangian method based on the error correction method is designed to solve incompressible Navier–Stokes equations. The time derivative of the Stokes equation is discretized with the second order backward differentiation formula. For the induced steady Stokes equation, a projection method is used to split it into velocity and pressure. Fourth-order finite differences for partial derivatives are used to the boundary value problems for the velocity and the pressure. Also, finite linear systems for Poisson equations and Helmholtz equations are solved with a matrix-diagonalization technique. For characteristic curves satisfying highly nonlinear self-consistent initial value problems, the departure points are solved with an error correction strategy having a temporal convergence of order two. The constructed algorithm turns out to be completely iteration free. In particular, the suggested algorithm possesses a good behavior of the total energy conservation compared to existing methods. To assess the effectiveness of the method, two-dimensional lid-driven cavity problems with large different Reynolds numbers are solved. The doubly periodic shear layer flows are also used to assess the efficiency of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.