Abstract

This paper describes the effects of non-axisymmetric endwall profiling on the aerodynamic performance of a linear turbine cascade at different incidence angles. The sinusoidal profiling is carried out with constant profile curvature along the mean streamline path. Three different profiles, with varying hump to dip height, are analyzed numerically and the performances are compared with the planar profile. Reynolds Averaged Navier Stokes (RANS) equations are solved in their conservative form using Finite Volume Method with SST turbulence model. The calculated results indicate that the profiled endwall minimizes the lateral movement of weaker boundary layer fluid from the hub-pressure side corner. In comparison with planar case, the flow deviations are largely contained with endwall profiling but closer to the endwall it enhances the overturning and secondary flow kinetic energy. The reduction in loss coefficient is estimated to be 1.3%, 8.7% and 38% for incidence angles of −10°, nominal and +15° respectively. The sinusoidal profiling has brought down the pitch averaged flow deviation and secondary flow kinetic energy at nominal and positive incidence angles but the impact is insignificant at negative incidence. Profiling minimizes the rolling up of the passage vortex and makes the passage vortex to migrate closer to the endwall. This flow modification brings down the losses in the core flow but enhances the losses near the endwall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.