Abstract

The use of solar energy can help reduce CO₂ emissions and dependency on fossil fuels, and using Solar Photovoltaic (PV) systems to generate electricity is a popular route to decarbonisation in the UK. To help achieve the targets set out in the Climate Change Act, building service consultants often use EDSL Tas, a dynamic modelling software, to simulate PV systems and integrate the energy output results into the overall energy performance of a building. There is, however, a clear performance gap between the measured and predicted energy output. There are many causes for the potential deviation of results, although the most influential in relation to energy performance is the use of weather data, future climate change, adverse weather conditions and environmental factors affecting the PV array. The results through a case study indicated an 8.6% higher measured energy output from the installed PV system although the performance gap has little detrimental effect regarding achieving Building Regulation compliance, but could lead to the unreasonable design of the PV system and inappropriate use of capital investment. Further simulation using projected future weather data from several different climate change scenarios was undertaken. 2020, 2050 and 2080 with low, medium and high emission scenarios indicated that the PV array would increase energy output by up to 5% by 2080 compared with using current weather data, indicating a rise in PV energy output in relation to increased CO₂ emissions. This is due to a projected reduction in cloud cover and increased downward shortwave radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call