Abstract

BackgroundTechnology is deployed to take the advantage of the ultimate energy from the sun (solar energy) to be used as heat or clean electricity. This energy is classified as “sustainable energy” or “renewable energy” because it requires a short period to naturally replenish the used energy. The application of solar energy involves the conversion of the natural energy resource into a usable form, either as heat or as electricity. The device consists of solar cells made from semiconductor materials, such as silicon, cadmium telluride, gallium arsenide, and so on. Solar potential is both location- and climate-dependent; it is characterised by low energy intensity and intermittency, which limit its application; an improvement in photovoltaic (PV) system performance will facilitate more deployment of the clean electricity system. Therefore, this study provides PV potential and system information required for reliable and optimised solar PV systems at chosen locations. This work uses a 5-stage solar PV system assessment and system performance evaluation utilising Solargis Prospect software. The PV potential and system performance of nine selected site locations in South Africa was conducted using this method. The nine PV site locations are Bloemfontein (Free State), Germiston (Gauteng), Mahikeng (North-West), Mbombela (Mpumalanga), Musgrave (Kwazulu-Natal), Musina (Limpopo), Port Nolloth (Northern Cape), Port Elizabeth (Eastern Cape), and Worcester (Western Cape).ResultThe results of the study were categorised into PV meteorological and system performance parameters as follows. Photovoltaic meteorological parameters—the site in Mahikeng has the highest global horizontal irradiance (GHI), 2156 kWh/m2, and a corresponding specific PV power output (1819.3 kWh/kWp), closely followed by Bloemfontein (2111.5 kWh/m2, 1819.4 kWh/kWp) and Port Nolloth (2003.2 kWh/m2, 1820.5 kWh/kWp). The lowest GHI (1645.1 kWh/m2) and specific PV power output (1436.6 kWh/kWp) were recorded in Musgrave. Photovoltaic system performance parameters—the range of performance ratio (PR) between 75.8 and 77.7% was reported across the nine sites. This ratio met the acceptable benchmark of PR. The highest specific PV power output loss, 118.8 kWh/kWp, was obtained at sites in Bloemfontein, Mahikeng, and Port Nolloth, while the lowest, 93.8 kWh/kWp, was in Musgrave.ConclusionsThe results of the solar PV potential assessment and the evaluation of PV systems performance in the chosen sites across the nine provinces of South Africa show huge PV potential and energy yield. From the results, it was observed that the range of the yearly average of: (1) GHI among the sites is 1645.1–2156 kWh/m2; (2) direct normal irradiation among the sites is 1785.3–2559.3 kWh/m2; (3) diffuse horizontal irradiation among the sites is 512.5–686kWh/m2; (4) global tilted irradiation among the sites is 1849.2–2397.1 kWh/m2; (5) the temperature (TEMP) among the sites is 16–23 °C; (6) specific PV power output (PVOUT specific) among the sites is 1436.6–1820.5 kWh/kWp; (7) total PV power output (PVOUT total) among the sites is 14.366–2397.1 MWh; and (8) the performance ratio among the sites is 75.8–77.7%. Based on the solar resource and performance results of the PV system obtained, the deployment of monocrystalline solar PV technology in all the considered sites across South Africa is technically viable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call