Abstract

Based upon the homogeneous skull model, the skull/brain assembly can be simplified as a homogeneous-shell (HMS)/core structure, in which the exterior shell and interior core represent the skull and brain, respectively. From the blast responses of the spherical shell/core structures calculated via finite element modeling, it is found that the existing homogeneous skull model developed by the well-accepted approach based upon three-point bending tests cannot properly describe the blast response of the skull, modeled as a three-layered sandwich (TLS) shell in the present work, e.g. the average error in the calculated core (brain) pressure is up to ∼30%. Moreover, an innovative approach based upon inverse analysis procedure is then proposed to develop a modified homogeneous skull model, which can give a proper description of the blast response of the skull (a TLS shell), e.g. the average error in the calculated core (brain) pressure is reduced to ∼7%. It is concluded that the well-accepted three-point bending approach cannot develop an effective HMS skull model for studying the blast response of the skull/brain assembly, upon which the model parameter will be overestimated by ∼60%; instead, the innovative approach based upon inverse analysis procedure should be adopted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.