Abstract

Inverse analyses procedures in structural problems are usually designed in order to assess some of the unknown parameters. Up to now we already saw that, for a successful development of fully operative inverse analysis procedure, it is required to put together three different elements: experimental technique, numerical simulation of it, and an optimization algorithm. The most traditional approach to the inverse analyses procedures, when structural problems are in focus, assumes that the simulation of the experiment is done by finite element modeling. It is classical, and the most common way of proceeding since nowadays there are well developed FE techniques at our disposal which can be used to simulate even complicated phenomena that may take place in a selected experiment. Given the required repeatability of the simulations enforced by the adopted optimization algorithm, this approach may not be the most convenient for the routine use, as it can be time consuming. Therefore, a modern approach to inverse analyses goes in the direction of avoiding a need to perform FE simulations every time when the inverse problem needs to be solved. One of the possible solutions of this problem is based on POD-RBF algorithm described in Chap. 3. Its implementation within an inverse analyses procedure will be discussed in the subsequent chapter. This chapter will focus on a traditional approach relaying on FE simulations, as it is anyhow very important at least in some of the phases of procedure development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call