Abstract

During seismic events, reinforced concrete (RC) columns play a crucial role in maintaining buildings’ structural integrity. This motivated engineers and practitioners to search for key parameters that influence the load-carrying capacity and failure mechanisms of such columns. However, the complexity and nonlinearity of seismic effects along with the intricate nature of RC columns as a composite system challenge the capabilities of analytical and empirical approaches to accurately capture the response of RC columns. Subsequently, the present study utilizes Machine Learning (ML) techniques to identify the failure modes and predict the corresponding capacities of RC columns based on both their geometrical and material properties. Decision trees and different ensemble methods were employed to predict both the columns’ failure mode and ultimate capacity. A multivariate dataset consisting of 486 cyclically loaded rectangular and circular columns was used to develop and validate the models. In addition, different embedded variable selection techniques were employed to evaluate the significance of input parameters in predicting the performance of columns. Moreover, partial dependence plots and accumulated local effects were employed to uncover the interrelationships between the input features and the modelled outputs. The developed models yielded an average accuracy of 90% and 95% for predicting the failure mode and ultimate capacity of RC columns, respectively. Given such high accuracy, it can be inferred that, ML techniques have the potential to provide efficient and reliable prediction tools to support seismic design and assessment decisions - mitigating seismic risks and empowering resilience planning in the face of extreme events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.