Abstract
Developments in wearable technologies created opportunities for non-invasive joint health assessment while subjects perform daily activities during rehabilitation and recovery. However, existing state-of-art solutions still require a health professional or a researcher to set up the device, and most of them are not convenient for at-home use. In this paper, we demonstrate the latest version of the multimodal knee brace that our lab previously developed. This knee brace utilizes four sensing modalities: joint acoustic emissions (JAEs), electrical bioimpedance (EBI), activity and temperature. We designed custom printed-circuit boards and developed firmware to acquire high quality data. For the brace material, we used a commercial knee brace and modified it for the comfort of patients as well as to secure all electrical connections. We updated the electronics to enable rapid EBI measurements for mid-activity tracking. The performance of the multimodal knee brace was evaluated through a proof-of-concept human subjects study (n=9) with 2 days of measurement and 3 sessions per day. We obtained consistent EBI data with less than 1 Ω variance in measured impedance within six full frequency sweeps (each sweep is from 5 kHz to 100 kHz with 256 frequency steps) from each subject. Then, we asked subjects to perform 10 unloaded knee flexion/extensions, while we measured continuous 5 kHz and 100 kHz EBI at every 100 ms. The ratio of the range of reactance (ΔX5kHz/ΔX100kHz) was found to be less than 1 for all subjects for all cycles, which indicates lack of swelling and thereby a healthy joint. We also conducted intra and inter session reliability analysis for JAE recordings through intraclass correlation analysis (ICC), and obtained excellent ICC values (>0.75), suggesting reliable performance on JAE measurements. The presented knee brace could readily be used at home in future work for knee health monitoring of patients undergoing rehabilitation or recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.