Abstract
The corrosion of steel reinforcements substantially degrades the longevity of reinforced concrete structures, particularly in marine settings. This investigation introduces a comprehensive model that simulates the processes involved in moisture and chloride ion transport, rebar corrosion, and the consequent cracking of concrete. The model reveals that the transport dynamics of chloride ions are primarily dictated by their penetration rates through the solution. The sensitivity of the steel to corrosion is a function of the concentrations of water and chloride ions, whereas the rate of corrosion predominantly depends on the availability of oxygen at the corrosive site. Oxygen diffusion is the rate-limiting step in the entire process of the electrochemical reactions of the rebar. And the peak corrosion rates are observed at the interface between the solution and the gas phase. The model calculates the stress and strain in the concrete resulting from volumetric expansion due to oxidization of the steel bars. By accurately reproducing the progression of corrosion-related damage, this model provides crucial insights for predicting the service life of offshore concrete structures and enhancing durability against aggressive environmental conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have