Abstract

We investigated vertical super-thin body (VSTB) FET performance in presence of different interface (HfO2/Si) trap distributions (uniform and Gaussian) and concentrations using TCAD tools. For trap concentration (TC) of 1013 eV−1 cm−2, the percentage change in on-to-off current ratio (Ion/Ioff) is 93.91% for uniform trap (UT) and 49.8% for Gaussian trap (GT) distribution. For the same TC, subthreshold swing (SS) shows percentage change of 5.1% for UT and 11.41% for GT distribution. Thus, the device performance shows good immunity for TC up to 1013 eV−1 cm−2. However, for TC = 1014 eV−1 cm−2 SS degrades significantly. The influence of traps on the cumulative effect of three noise sources (diffusion + generation–recombination/G–R + flicker) and on individual noise sources (G–R and diffusion) is explained qualitatively at low and high frequencies (f = 1 MHz and 10 GHz). The study shows that the overall noise cannot disturb the device performance at very high frequency. Various radio-frequency (RF) parameters like transconductance (gm), total input capacitance (Cgg), gate-drain capacitance (Cgd), unit-gain cutoff frequency (fT), and gain–bandwidth-product (GBP) are also studied for variation of trap types. For TC = 1014 eV−1 cm−2, the percentage change in fTmax (GBPmax) is − 21.43% (− 8%) for UT and − 22.86% (− 9.6%) for GT distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.