Abstract

The purpose of this study is to investigate the effect of reaction conditions on the silanization of montmorillonite nanoparticles using methacryloxypropyltrimethoxysilane (γ–MPS) and to establish relationships between the reaction conditions, the grafting percentage, and the silane arrangement on the particles. The silanization reaction was performed in the following conditions: (i) acidic ethanol-water solution with a pH of 5 and (ii) basic cyclohexane with a pH of 9. To characterize the surface of montmorillonite nanoparticles, analytical methods such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), CHN elemental analysis, and X-ray diffraction (XRD) diffraction were utilized. In addition, the dispersion stability of modified particles suspended in different solvents was investigated using a separation analyzer. The results revealed silane grafting in cyclohexane (pH = 9) achieved higher silanization efficiency, leading to a larger basal spacing in montmorillonite nanoparticles. A parallel arrangement was also suggested for the silane molecules on the surface of the nanoparticles. The higher hydrophobicity of the modified nanoparticles and the decreased overall density of the grafted particles led to a better dispersion in ethanol and toluene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.