Abstract

Strong consistency and asymptotic normality of a Gaussian quasi-maximum likelihood estimator for the parameters of a causal, invertible, and identifiable vector autoregressive-moving average (VARMA) model are established in an indirect way. The proof is based on similar results for a much wider class of VARMA models with time-dependent coefficients, hence in the context of non-stationary and heteroscedastic time series. For that reason, the proof avoids spectral analysis arguments and does not make use of ergodicity. The results presented are also applicable to ARMA models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.