Abstract

ABSTRACTIn this paper, a new hybrid model of vector autoregressive moving average (VARMA) models and Bayesian networks is proposed to improve the forecasting performance of multivariate time series. In the proposed model, the VARMA model, which is a popular linear model in time series forecasting, is specified to capture the linear characteristics. Then the errors of the VARMA model are clustered into some trends by K-means algorithm with Krzanowski–Lai cluster validity index determining the number of trends, and a Bayesian network is built to learn the relationship between the data and the trend of its corresponding VARMA error. Finally, the estimated values of the VARMA model are compensated by the probabilities of their corresponding VARMA errors belonging to each trend, which are obtained from the Bayesian network. Compared with VARMA models, the experimental results with a simulation study and two multivariate real-world data sets indicate that the proposed model can effectively improve the prediction performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.