Abstract

Abstract A simple guide to the new technique of empirical mode decomposition (EMD) in a meteorological–climate forecasting context is presented. A single application of EMD to a time series essentially acts as a local high-pass filter. Hence, successive applications can be used to produce a bandpass filter that is highly efficient at extracting a broadband signal such as the Madden–Julian oscillation (MJO). The basic EMD method is adapted to minimize end effects, such that it is suitable for use in real time. The EMD process is then used to efficiently extract the MJO signal from gridded time series of outgoing longwave radiation (OLR) data. A range of statistical models from the general class of vector autoregressive moving average (VARMA) models was then tested for their suitability in forecasting the MJO signal, as isolated by the EMD. A VARMA (5, 1) model was selected and its parameters determined by a maximum likelihood method using 17 yr of OLR data from 1980 to 1996. Forecasts were then made on the remaining independent data from 1998 to 2004. These were made in real time, as only data up to the date the forecast was made were used. The median skill of forecasts was accurate (defined as an anomaly correlation above 0.6) at lead times up to 25 days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.