Abstract

Fast algorithms for electrically large objects buried in layered media are mainly hindered by two time-consuming processes. One is the table filling of Green's function, and the other is the solving of the impedance matrix equation. For the first, to accelerate the evaluation of the time-consuming Sommerfeld integral in the dyadic Green's function (DGF), the discrete complex image method (DCIM) is introduced to get a closed-form DGF. To further accelerate the calculation of DGF for the volume electric field integral equation (EFIE), DGF is split before applying DCIM. For the second, the iterative solver stabilized biconjugate gradient fast Fourier transform (BCGS-FFT) is combined with DCIM for solving the matrix equations. Meanwhile, the closed-form DGF enables the spherical-mean Green's function, which eliminates the singularity of Green's function. Numerical results show that the weaker singularity results in a faster and steadier convergence rate for iterative solvers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.