Abstract

An improved energy transport model for device simulation is derived from the zeroth and second moments of the Boltzmann transport equation (BTE) and from the presumed functional form of the even part of the carrier distribution in momentum space. Energy-band nonparabolicity and non-Maxwellian distribution effects are included to first order. The model is amenable to an efficient self-consistent discretization taking advantage of the similarity between current and energy flow equations. Numerical results for ballistic diodes and MOSFETs are presented. Typical spurious velocity overshoot spikes, obtained in conventional hydrodynamic (HD) simulations of ballistic diodes, are virtually eliminated.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.