Abstract
Abstract While it has been established that pronounced sea-breeze fronts (SBF) develop under conditions of weak or offshore flow, with the SBF serving as a focus for convection initiation (CI), less is known regarding CI processes during large-scale onshore flow, including the potential existence and influence of embedded SBF. Challenges that have limited progress in addressing this question include the limited focus on cases under this flow regime and the coarse grid spacing used in prior model-based parameter studies, artificially decreasing the magnitude of convergence or thermodynamic gradients associated with the SBF and potentially leading to substantial error in representation of surface fluxes. In Part II of this two-part series, the authors address these prior challenges through execution of a suite of Cloud Model 1 (CM1) large-eddy simulations analyzing the impact of varying the magnitude of the onshore wind component (+2.5 and +5.0 m s−1), and radiative forcing and water surface temperature consistent for summertime in the Great Lakes region. In all simulations, a mesoscale enhancement of onshore flow and return flow were present, with a thermal gradient and convergence co-located with the leading edge of this enhanced flow providing evidence for the presence of a diffuse yet discernible SBF. The SBF progressed inland and separated areas where CI did and did not occur, highlighting the need for increased focus on SBF and CI in this less-studied flow regime. In conditions of weak onshore flow, surface-based CAPE was larger, CI was more common, and occurred closer to the coast.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have