Abstract
A finite element algorithm is presented for the simulation of steady incompressible fluid flow with heat transfer using triangular meshes. The continuity equation is modified by employing the artificial compressibility concept to provide coupling between the pressure and velocity fields of the fluid. A standard Galerkin finite element method is used for spatial discretization and an explicit multistage Runge‐Kutta scheme is used to march in the time domain. The resulting procedure is stabilized using an artificial dissipation technique. To demonstrate the performance of the proposed algorithm a wide range of test cases is solved including applications with and without heat transfer. Both natural and forced convection applications are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Methods for Heat & Fluid Flow
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.