Abstract

Very little work have been reported on the computational methods for non-Newtonian fluid turbulent flows. This is due to nonlinear system of elliptic partial differential equations that makes the solution very difficult. Another concern is the meshing of flow domain that accounts for complications in solving most problems. In this work we present standard Galerkin finite element method for the steady incompressible non Newtonian fluid flow in a convergingdiverging nozzle. The flow is fully three-dimensional with turbulent characteristics. The main aim is to study the velocity and shear stress profiles. Shock profiles are noted for specific pressure boundary conditions. Moreover the plotted results shows variations of velocity components, pressure and turbulence energy dissipation. It is observed that for non-Newtonian fluid flow the mass flow rate and pressure loss effects are significant in diverging part of nozzle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call