Abstract
In the development of data-driven models for streamflow forecasting, choosing appropriate input variables is crucial. Although random forest (RF) has been successfully applied to streamflow forecasting for input variable selection (IVS), comparative analysis of different random forest-based IVS (RF-IVS) methods is yet absent. Here, we investigate performance of five RF-IVS methods in four data-driven models (RF, support vector regression (SVR), Gaussian process regression (GP), and long short-term memory (LSTM)). A case study is implemented in the contiguous United States for one-month-ahead streamflow forecasting. Results indicate that RF-IVS methods enable to acquire enhanced performance in comparison to widely used partial Pearson correlation and conditional mutual information. Meanwhile, performance-based RF-IVS methods appear to be superior to test-based methods, and the test-based methods tend to select redundant variables. The RF with a forward selection strategy is finally recommended to connect with GP model as a promising combination having potential to yield favorable performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.