Abstract

PurposeThe purpose of this study is to set up an evaluation model to predict massive open online courses (MOOC) learning performance by analyzing MOOC learners’ online learning behaviors, and comparing three algorithms – multiple linear regression (MLR), multilayer perceptron (MLP) and classification and regression tree (CART).Design/methodology/approachThrough literature review and analysis of data correlation in the original database, a framework of online learning behavior indicators containing 26 behaviors was constructed. The degree of correlation with the final learning performance was analyzed based on learners’ system interaction behavior, resource interaction behavior, social interaction behavior and independent learning behavior. A total of 12 behaviors highly correlated to learning performance were extracted as major indicators, and the MLR method, MLP method and CART method were used as typical algorithms to evaluate learners’ MOOC learning performance.FindingsThe behavioral indicator framework constructed in this study can effectively analyze learners’ learning, and the evaluation model constructed using the MLP method (89.91%) and CART method (90.29%) can better achieve the prediction of MOOC learners’ learning performance than using MLR method (83.64%).Originality/valueThis study explores the patterns and characteristics among different learning behaviors and constructs an effective prediction model for MOOC learners’ learning performance, which can help teachers understand learners’ learning status, locate learners with learning difficulties promptly and provide targeted instructional interventions at the right time to improve teaching quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.