Abstract
AbstractPhotoacoustic agents have been of vital importance for improving the imaging contrast and reliability against self‐interference from endogenous substances. Herein, we synthesized a series of thiadiazoloquinoxaline (TQ)‐based semiconducting polymers (SPs) with a broad absorption covering from NIR‐I to NIR‐II regions. Among them, the excited s‐BDT‐TQE, a repeating unit of SPs, shows a large dihedral angle and narrow adiabatic energy as well as low radiative decay, attributing to its strongly electron‐deficient ester‐substituted TQ‐segment. In addition, its more vigorous molecular motions trigger a higher reorganization energy that further yields an efficient photoinduced nonradiative decay, which has been carefully examined and understood by theoretical calculation. Thus, BDT‐TQE SP‐cored nanoparticles with twisted intramolecular charge transfer (TICT) feature exhibit a high NIR‐II photothermal conversion efficiency (61.6 %) and preferable PA tracking of in situ hepatic tumor growth for more than 20 days. This study highlights a unique strategy for constructing efficient NIR‐II photoacoustic agents via TICT‐enhanced PNRD effect, advancing their applications for in vivo bioimaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.