Abstract

It remains highly challenging to identify small molecule-based photothermal agents with a high photothermal conversion efficiency (PTCE). Herein, we adopt a double bond-based molecular motor concept to develop a new class of small photothermal agents to break the current design bottleneck. As the double-bond is twisted by strong twisted intramolecular charge transfer (TICT) upon irradiation, the excited agents can deactivate non-radiatively through the conical intersection (CI) of internal conversion, which is called photoinduced nonadiabatic decay. Such agents possess a high PTCE of 90.0 %, facilitating low-temperature photothermal therapy in the presence of a heat shock protein 70 inhibitor. In addition, the behavior and mechanism of NIR laser-triggered molecular motions for generating heat through the CI pathway have been further understood through theoretical and experimental evidence, providing a design principle for highly efficient photothermal and photoacoustic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.