Abstract

AbstractIt remains highly challenging to identify small molecule‐based photothermal agents with a high photothermal conversion efficiency (PTCE). Herein, we adopt a double bond‐based molecular motor concept to develop a new class of small photothermal agents to break the current design bottleneck. As the double‐bond is twisted by strong twisted intramolecular charge transfer (TICT) upon irradiation, the excited agents can deactivate non‐radiatively through the conical intersection (CI) of internal conversion, which is called photoinduced nonadiabatic decay. Such agents possess a high PTCE of 90.0 %, facilitating low‐temperature photothermal therapy in the presence of a heat shock protein 70 inhibitor. In addition, the behavior and mechanism of NIR laser‐triggered molecular motions for generating heat through the CI pathway have been further understood through theoretical and experimental evidence, providing a design principle for highly efficient photothermal and photoacoustic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.