Abstract

This study evaluates the feasibility of using enzymatic technology to produce novel nanostructures of cellulose nanomaterials, specifically cellulose nanospheres (CNS), through enzymatic hydrolysis with endoglucanase and xylanase of pre-treated cellulose fibers. A statistical experimental design facilitated a comprehensive understanding of the process parameters, which enabled high yields of up to 82.7 %, while maintaining a uniform diameter of 54 nm and slightly improved crystallinity and thermal stability. Atomic force microscopy analyses revealed a distinct CNS formation mechanism, where initial fragmentation of rod-like nanoparticles and subsequent self-assembly of shorter rod-shaped nanoparticles led to CNS formation. Additionally, adjustments in process parameters allowed precise control over the CNS diameter, ranging from 20 to 100 nm, highlighting the potential for customization in high-performance applications. Furthermore, this study demonstrates how the process framework, originally developed for cellulose nanocrystals (CNC) production, was successfully adapted and optimized for CNS production, ensuring scalability and efficiency. In conclusion, this study emphasizes the versatility and efficiency of the enzyme-based platform for producing high-quality CNS, providing valuable insights into energy consumption for large-scale economic and environmental assessments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.