Abstract

The limited vanillin (3a) production from plant sources requires identifying some renewable and sustainable approaches for its synthesis. This study aimed to develop an efficient, eco-friendly process for synthesizing vanillin (3a) from eugenol (1a) and eugenol-rich essential oils. The chemical methodology for vanillin (3a) synthesis involved base-mediated isomerization of eugenol (1a) to isoeugenol (2a), followed by OsO4/NaIO4 mediated oxidation of isoeugenol to vanillin (3a) using different additives such 1,4-diazabicyclo[2.2.2]octane (DABCO) and substituted pyridines in reusable environment-friendly solvents. Use of 2,6-dimethylpyridine and 2,6-dimethylpyridine N-oxide as additives in the oxidation step offered a significantly higher product yield (vanillin 3a, 70 %). The process synthesized vanillin (3a) irrespective of the cis/ trans stereochemistry of isoeugenol (2a). The peculiarity of the method relates to converting eugenol (1a) to vanillin (3a) without phenolic group protection, which offers step economy. Besides efficient vanillin (3a) synthesis, the process's general implications involve converting other naturally occurring phenylpropenes or phenylpropenes-enriched oils to the corresponding phenyl aldehydes (59–82 % yield).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.