Abstract

Vanillin, an important aroma chemical, can be synthesized through industrial oxidation processes and biotechnological processes. Studying the environmental impacts of synthetic vanillin production processes is fundamental to making these processes feasible and sustainable; however, few studies have focused on such analyses. This study involved performing a life cycle assessment (LCA) to evaluate multiple industrial synthesis and biosynthesis processes for producing synthetic vanillin. The results indicated that human toxicity potential (HTP) appeared to be the most affected indicator among all the impact categories considered. The dominant drivers of the HTP of the vanillin synthesis process were electricity consumption and ultrapure water consumption. Improvement strategies were then proposed to investigate the possibility of reducing the environmental burdens created by vanillin synthesis. Natural gas power generation was determined to be the best choice for replacing traditional coal-fired power generation, thus reducing the negative impacts of these processes on the environment. The best ways to reduce chemical consumption were to recover organic solvents and to replace ultrapure water with industrial or distilled water. All these improvement strategies were demonstrated to be able to effectively reduce the HTP. In addition, suggestions for evaluating scaled-up vanillin production, increasing the LCA coverage to include technological advancements in biosynthesis techniques, and introducing cost-benefit analysis into the LCA were discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call