Abstract

Natural and synthetic metabolic pathways need to retain stability when faced against random changes in gene expression levels and kinetic parameters. In the presence of large parameter changes, a robust system should specifically avoid moving to an unstable region, an event that would dramatically change system behavior. Here we present an entropy-like index, denoted as S, for quantifying the bifurcational robustness of metabolic systems against loss of stability. We show that S enables the optimization of a metabolic model with respect to both bifurcational robustness and experimental data. We then demonstrate how the coupling of ensemble modeling and S enables us to discriminate alternative designs of a synthetic pathway according to bifurcational robustness. Finally, we show that S enables the identification of a key enzyme contributing to the bifurcational robustness of yeast glycolysis. The different applications of S demonstrated illustrate the versatile role it can play in constructing better metabolic models and designing functional non-native pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call