Abstract

Several recent studies reported the capability of high diluted homeopathic medicines to modulate gene expression in cell cultures. In line with these studies, we examined whether ultra-high dilutions (30C and 200C) of sodium butyrate (SB) can affect the expression levels of genes involved in acquisition of a senescence-associated secretory phenotype (SASP) in human embryonic kidney (HEK) 293 cells. Cell viability was evaluated using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The expression levels of TNF-α, interleukin (IL)-2, IL-4, IL-6 and IL-10 genes were determined by real-time PCR assay. Exposure to both 30C and 200C during 48h led to a significant decrease of the level of expression of TNF-α gene, while expression of IL-2 gene was increased when exposed to 30C, and expression of IL-10 gene was decreased when exposed to 200C. No changes in expression levels of all genes studied were observed in cells treated with both 30C and 200C remedies of SB during the 24h. Observed changes in gene expression levels after exposure to 30C and 200C remedies of SB during 48h suggest that extremely low concentrations of this agent can modulate the transcriptome of HEK 293 cells. These results are in line with findings from other studies confirming the ability of homeopathic remedies to modulate gene expression in cell cultures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call