Abstract

Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate.

Highlights

  • Traditional metabolic modeling techniques involve the reconstruction of kinetic models based on detailed knowledge on enzyme kinetic parameters for all enzymes in a certain system [1]

  • Modeling with ENzyme kineTics (MOMENT) predicts growth rates of E. coli across a set of 24 different media that are significantly correlated with experimental measurements, while existing state-of-the art stoichiometric modeling approaches fail to do so

  • These results suggest that a bound on cellular enzyme concentrations is a key factor that determines microbial growth rate

Read more

Summary

Introduction

Traditional metabolic modeling techniques involve the reconstruction of kinetic models based on detailed knowledge on enzyme kinetic parameters for all enzymes in a certain system [1]. An alternative approach called Constraint-Based Modeling (CBM) predicts certain steady-state cellular metabolic phenotypes in microorganisms on a genome-scale by relying solely on simple physical-chemical constraints, without requiring enzyme kinetic data [2,3,4]. This approach identifies steady-state flux rates (in units of mmol/(g[DW]*h) through a metabolic network, satisfying stoichiometric mass-balance as well as reaction directionality constraints, such that nutrients taken up with a certain measured rate (in units of mmol/g[DW]*h) are transformed into biomass. CBM is commonly used for metabolic engineering in microorganisms, predicting the effect of gene knockouts on organism viability [2]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call