Abstract

Twitter spam needs to be detected and arrested quickly. The paper examines methods for classification of spam in terms of determination of important features, comparative performance of classification models, and improvement in time performance for classification. It presents a conceptualization of several novel rich, deep, and naïve features. The extraction processes for rich and deep features increase the time complexity of spam classification. To address this, the proposed model selectively segregates and combines features to enable near real-time processing. This supersedes the time performance of standard machine learning and deep learning models, with no compromise on the quality of classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.