Abstract
Ubiquitin-specific-processing protease 7 (USP7) is a promising target protein for cancer therapy, and great attention has been given to the identification of USP7 inhibitors. Traditional virtual screening methods have now been successfully applied to discover USP7 inhibitors aiming at reducing costs and speeding up time in several studies. However, due to their unsatisfactory accuracy, it is still a difficult task to develop USP7 inhibitors. In this study, multiple supervised learning classifiers were built to distinguish active USP7 inhibitors from inactive ligands. Physicochemical descriptors, MACCS keys, ECFP4 fingerprints and SMILES were first calculated to represent the compounds in our in-house dataset. Two deep learning (DL) models and nine classical machine learning (ML) models were then constructed based on different combinations of the above molecular representations under three activity cutoff values, and a total of 15 groups of experiments (75 experiments) were implemented. The performance of the models in these experiments was evaluated, compared and discussed using a variety of metrics. The optimal models are ensemble learning models when the dataset is balanced or severely imbalanced, and SMILES-based DL performs the best when the dataset is slightly imbalanced. Meanwhile, multimodal data fusion in some cases can improve the performance of ML and DL models. In addition, SMOTE, unbiased decoy selection and SMILES enumeration can improve the performance of ML and DL models when the dataset is severely imbalanced, and SMOTE works the best. Our study established highly accurate supervised learning classification models, which would accelerate the development of USP7 inhibitors. Some guidance was also provided for drug researchers in selecting supervised models and molecular representations as well as handling imbalanced datasets.Graphical
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.