Abstract
Diabetes is a long-lasting disease triggered by expanded sugar levels in human blood and can affect various organs if left untreated. It contributes to heart disease, kidney issues, damaged nerves, damaged blood vessels, and blindness. Timely disease prediction can save precious lives and enable healthcare advisors to take care of the conditions. Most diabetic patients know little about the risk factors they face before diagnosis. Nowadays, hospitals deploy basic information systems, which generate vast amounts of data that cannot be converted into proper/useful information and cannot be used to support decision making for clinical purposes. There are different automated techniques available for the earlier prediction of disease. Ensemble learning is a data analysis technique that combines multiple techniques into a single optimal predictive system to evaluate bias and variation, and to improve predictions. Diabetes data, which included 17 variables, were gathered from the UCI repository of various datasets. The predictive models used in this study include AdaBoost, Bagging, and Random Forest, to compare the precision, recall, classification accuracy, and F1-score. Finally, the Random Forest Ensemble Method had the best accuracy (97%), whereas the AdaBoost and Bagging algorithms had lower accuracy, precision, recall, and F1-scores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.