Abstract

Robotic ankle exoskeletons have been shown to reduce human effort during walking. However, existing ankle exoskeleton control approaches are limited in their ability to apply biomimetic torque across diverse tasks outside of the controlled lab environment. Energy shaping control can provide task-invariant assistance without estimating the user's state, classifying task, or reproducing pre-defined torque trajectories. In previous work, we showed that an optimally task-invariant energy shaping controller implemented on a knee-ankle exoskeleton reduced the effort of certain muscles for a range of tasks. In this paper, we extend this approach to the sensor suite available at the ankle and present its implementation on a commercially-available, bilateral ankle exoskeleton. An experiment with three healthy subjects walking on a circuit and on a treadmill showed that the controller can approximate biomimetic profiles for varying terrains and task transitions without classifying tasks or switching control modes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call