Abstract
A method to determine process-induced residual stress in fiber-reinforced composite materials using strain measurements from embedded fiber optic sensors is presented. This method allows non-destructive, real-time determination of residual macrostress in these materials and may be useful for both process monitoring and control. Extrinsic Fabry-Perot interferometer strain sensors were embedded in Hercules AS4/3501-6 graphite/epoxy composite specimens prior to cure. The specimens were cured in a press, and the internal strains and temperatures developed during processing were monitored and recorded. Residual macrostresses were computed from these measurements using a viscoelastic model of the material. The results compare favorably with analytical predictions, previous experimental measurements from a destructive technique, and with measurements of warpage of a non-symmetric laminate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.