Abstract

This paper presents the results of experiments to measure the internal strains and temperatures that are generated in graphite/epoxy composite specimens during processing using embedded fiber optic strain sensors and thermocouples. Measurements of strain and temperature, combined with a computational model, offer the potential for non-destructive, real-time determination of residual stress in composites, and may be useful for process monitoring and control. Extrinsic Fabry-Perot interferometer, Bragg grating strain sensors, and thermocouples were embedded in graphite/epoxy composite laminates prior to cure. The specimens were cured in a press, and the internal strains and temperatures developed during processing were monitored and recorded. The results are compared with expected values, and limitations of the experimental technique are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.