Abstract

An interface crack with a frictionless contact zone at the right crack-tip between two dissimilar magnetoelectroelastic materials under the action of a thermal flux and remote magnetoelectromechanical loads is considered. The open part of the crack is assumed to be electrically impermeable and magnetically permeable, and the crack faces are assumed to be heat insulted. The inhomogeneous combined Dirichlet–Riemann and Hilbert boundary value problems are, respectively, formulated and solved analytically. Stress, electrical displacement intensity factors as well as energy release rate are found in analytical forms, and analytical expressions for the contact zone length have been obtained for both the general case and the case of small contact zone length. Some numerical results are presented, which show clearly the effects of thermal and magnetoelectromechanical loads on the contact zone length, stress intensity factor and energy release rate. Results presented in this paper should have potential applications to the design of multilayered magnetoelectroelastic structures and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.