Abstract

An electrically conductive interface crack with a contact zone in a magnetoelectroelastic (MEE) bimaterial system is considered. The bimaterial is polarized in the direction orthogonal to the crack faces and is loaded by remote tension and shear forces as well as electrical and magnetic fields parallel to the crack faces. It is assumed that the electrical field inside the crack faces is equal to zero and the magnetic quantities are continuous across the crack faces. Using special expressions of magnetoelectromechanical quantities via sectionally-analytic functions proposed in this paper, a combined Dirichlet–Riemann and Hilbert boundary value problem is formulated and solved analytically. Explicit analytical expressions for the characteristic mechanical, electrical and magnetic parameters are presented. A simple transcendental equation is derived for the determination of the contact zone length. Stress, electric field and magnetic field intensity factors and the contact zone length are found for various loading cases. A significant influence of the electric field on the contact zone length, stress and electric field intensity factors is observed. Magnetoelectrically permeable conditions in the crack region are also investigated and comparisons of different crack models are performed. Results presented in this paper should have potential applications to the design of multilayered magnetoelectroelastic (MEE) structures and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.