Abstract
This work presents a RISC-V system-on-chip (SoC) with eight application cores containing programmable-precision vector accelerators. The SoC is built by using a generator-based design methodology, which enables the integration of open-source and project-specific building blocks to develop differentiated functionality. The digital component generators use Chisel, the analog component generators use the Berkeley Analog Generator (BAG), and the physical design flow is implemented with Hammer. The chip totals 125 M gates and is implemented in a 16-nm finFET process. The vector accelerator achieves peak energy efficiency per task of 209 half-precision, 92 single-precision, and 56 double-precision GFLOPs/W for a matrix multiplication kernel at 0.55 V and 339 MHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.