Abstract

PurposeThe purpose of this paper is to propose an efficient space-time operator-splitting method for the high-dimensional vector-valued Allen–Cahn (AC) equations. The key of the space-time operator-splitting is to devide the complex partial differential equations into simple heat equations and nolinear ordinary differential equations.Design/methodology/approachEach component of high-dimensional heat equations is split into a series of one-dimensional heat equations in different spatial directions. The nonlinear ordinary differential equations are solved by a stabilized semi-implicit scheme to preserve the upper bound of the solution. The algorithm greatly reduces the computational complexity and storage requirement.FindingsThe theoretical analyses of stability in terms of upper bound preservation and mass conservation are shown. The numerical results of phase separation, evolution of the total free energy and total mass conservation show the effectiveness and accuracy of the space-time operator-splitting method.Practical implicationsExtensive 2D/3D numerical tests demonstrated the efficacy and accuracy of the proposed method.Originality/valueThe space-time operator-splitting method reduces the complexity of the problem and reduces the storage space by turning the high-dimensional problem into a series of 1D problems. We give the theoretical analyses of upper bound preservation and mass conservation for the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.