Abstract

In this article, an efficient hybrid method has been developed for solving some special type of nonlinear partial differential equations. Hybrid method is based on tanh–coth method, quasilinearization technique and Haar wavelet method. Nonlinear partial differential equations have been converted into a nonlinear ordinary differential equation by choosing some suitable variable transformations. Quasilinearization technique is used to linearize the nonlinear ordinary differential equation and then the Haar wavelet method is applied to linearized ordinary differential equation. A tanh–coth method has been used to obtain the exact solutions of nonlinear ordinary differential equations. It is easier to handle nonlinear ordinary differential equations in comparison to nonlinear partial differential equations. A distinct feature of the proposed method is their simple applicability in a variety of two‐ and three‐dimensional nonlinear partial differential equations. Numerical examples show better accuracy of the proposed method as compared with the methods described in past. Error analysis and stability of the proposed method have been discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.