Abstract

Multi-Secret Image Sharing (MSIS) is important in information security when multiple images are shared in an unintelligible form to different participants, where the images can only be recovered using the shares from participants. This paper proposes a simple and efficient ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n,n$ </tex-math></inline-formula> )-MSIS system for colored images based on XOR and Chinese Remainder Theorem (CRT), where all the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> share are required in the recovery. The system improves the security by adding dependency on the input images to be robust against differential attacks, and by using several delay units. It works with even and odd number of inputs, and has a long sensitive system key design for the CRT. Security analysis and a comparison with related literature are introduced with good results including statistical tests, differential attack measures, and key sensitivity tests as well as performance analysis tests such as time and space complexity. In addition, Field Programmable Gate Array (FPGA) realization of the proposed system is presented with throughput 530 Mbits/sec. Finally, the proposed MSIS system is validated through software and hardware with all statistical analyses and proper hardware resources with low power consumption, high throughput and high level of security.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.