Abstract

We propose an efficient hardware architecture design & implementation of Advanced Encryption Standard (AES). The AES algorithm defined by the National Institute of Standard and Technology (NIST) of United States has been widely accepted. The cryptographic algorithms can be implemented with software or built with pure hardware. However Field Programmable Gate Arrays (FPGA) implementation offers quicker solution and can be easily upgraded to incorporate any protocol changes. This contribution investigates the AES encryption cryptosystem with regard to FPGA and Very High Speed Integrated Circuit Hardware Description language (VHDL). Optimized and Synthesizable VHDL code is developed for the implementation of 128- bit data encryption process. AES encryption is designed and implemented in FPGA, which is shown to be more efficient than published approaches. Xilinx ISE 12.3i software is used for simulation. Each program is tested with some of the sample vectors provided by NIST and output results are perfect with minimal delay. The throughput reaches the value of 1609Mbit/sec for encryption process with Device XC6vlx240t of Xilinx Virtex Family.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.