Abstract
Histopathological images are widely used to diagnose diseases such as skin cancer. As digital histopathological images are typically of very large size, in the order of several billion pixels, automated identification of abnormal cell nuclei and their distribution within multiple tissue sections would enable rapid comprehensive diagnostic assessment. In this paper, we propose a deep learning-based technique to segment the melanoma regions in Hematoxylin and Eosin-stained histopathological images. In this technique, the nuclei in an image are first segmented using a deep learning neural network. The segmented nuclei are then used to generate the melanoma region masks. Experimental results show that the proposed method can provide nuclei segmentation accuracy of around 90% and the melanoma region segmentation accuracy of around 98%. The proposed technique also has a low computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.