Abstract
MachineryApproximate computing is an emerging design paradigm for error-tolerant applications. e.g., signal processing and machine learning. In approximate computing, the area, delay, or power consumption of an approximate circuit can be improved by trading off its accuracy. In this paper, we propose an approximate logic synthesis approach based on a node-merging technique with an error rate guarantee. The ideas of our approach are to replace internal nodes by constant values and to merge two similar nodes in the circuit in terms of functionality. We conduct experiments on a set of IWLS 2005 and MCNC benchmarks. The experimental results show that our approach can reduce area by up to 80%, and 31% on average. As compared with the state-of-the-art method, our approach has a speedup of 51 under the same 5% error rate constraint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.