Abstract

The paper presents a general approach to numerically simulate the noise behavior of bipolar solid-state electron devices through a physics-based multidimensional device model. The proposed technique accounts for noise sources due to carrier velocity and population fluctuations. The power and correlation spectra of the external current or voltage fluctuations are evaluated through a Green's function, linear perturbation theory equivalent to the classical Impedance Field Method for noise analysis and its generalizations. The numerical implementation of the method is performed through an efficient technique, which allows noise analysis to be carried out with negligible overhead with respect to the small-signal simulation. Some case studies are analyzed in order to compare the present approach with theoretical results from the classical noise theory of p-n junctions and bipolar transistors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call