Abstract

Chinese long text classification plays a vital role in Natural Language Processing. Compared to Chinese short texts, Chinese long texts contain more complex semantic feature information. Furthermore, the distribution of these semantic features is uneven due to the varying lengths of the texts. Current research on Chinese long text classification models primarily focuses on enhancing text semantic features and representing Chinese long texts as graph-structured data. Nonetheless, these methods are still susceptible to noise information and tend to overlook the deep semantic information in long texts. To address the above challenges, this study proposes a novel and effective method called MACFM, which introduces a deep feature information mining method and an adaptive modal feature information fusion strategy to learn the semantic features of Chinese long texts thoroughly. First, we present the DCAM module to capture complex semantic features in Chinese long texts, allowing the model to learn detailed high-level representation features. Then, we explore the relationships between word vectors and text graphs, enabling the model to capture abundant semantic information and text positional information from the graph. Finally, we develop the AMFM module to effectively combine different modal feature representations and eliminate the unrelated noise information. The experimental results on five Chinese long text datasets show that our method significantly improves the accuracy of Chinese long text classification tasks. Furthermore, the generalization experiments on five English datasets and the visualized results demonstrate the effectiveness and interpretability of the MACFM model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.