Abstract

To solve the problem regarding unbalanced distribution of multi-category Chinese long texts and improve the classification accuracy thereof, a data enhancement method was proposed. Combined with this method, a feature-enhanced text-inception model for Chinese long text classification was proposed. First, the model used a novel text-inception module to extract important shallow features of the text. Meanwhile, the bidirectional gated recurrent unit (Bi-GRU) and the capsule neural network were employed to form a deep feature extraction module to understand the semantic information in the text; K-MaxPooling was then used to reduce the dimension of its shallow and deep features and enhance the overall features. Finally, the Softmax function was used for classification. By comparing the classification effects with a variety of models, the results show that the model can significantly improve the accuracy of long Chinese text classification and has a strong ability to recognize long Chinese text features. The accuracy of the model is 93.97% when applied to an experimental dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.