Abstract

Quantifying the environmental impacts and simulating the energy consumption of building’s components at the conceptual design stage are very helpful for designers needing to make decisions related to the selection of the best design alternative that would lead to a more energy efficient building. Building Information Modeling (BIM) offers designers the ability to assess different design alternatives at the conceptual stage of the project so that energy and life cycle assessment (LCA) strategies and systems are attained. This paper proposes an automated model that links BIM, LCA, energy analysis, and lighting simulation tools with green building certification systems. The implementation is within developing plug-ins on BIM tool capable of measuring the environmental impacts (EI) and embodied energy of building components. Using this method, designers will be provided with a new way to visualize and to identify the potential gain or loss of energy for the building as a whole and for each of its associated components. Furthermore, designers will be able to detect and evaluate the sustainability of the proposed buildings based on Leadership in Energy and Environmental Design (LEED) rating system. An actual building project will be used to illustrate the workability of the proposed methodology.

Highlights

  • Important decisions related to the design of sustainable buildings are made at the conceptual stage of their lives

  • The detected components by the plug-in that get 44 Leadership in Energy and Environmental Design (LEED) points are based on the Canadian Green Building Council (CaGBC) rating system. This is an approximate number of the LEED points that are earned by the designed case building since the focus of this study is at the conceptual design stage, which means that the calculated points do not necessarily reflect the final number that can be earned when the building is completed

  • The novelty highlighted in this paper describes the model’s different modules, which are integrated into each other based on an automated process by creating new plug-ins and improving the functionality of the existing ones so that users will be able to start the sustainable design of a proposed building project at the conceptual stage of its life cycle in a timely and cost effective

Read more

Summary

Introduction

Important decisions related to the design of sustainable buildings are made at the conceptual stage of their lives This practice does not consider the integration between the design and energy analysis processes during early stages and leads to an inefficient way of backtracking to modify the design in order to achieve a set of performance criteria [1]. Building materials consume energy throughout their life cycle starting by the manufacturing stage, passing through that of use, and finishing by the deconstruction phase. These stages include raw material extraction, transport, manufacture, assembly, installation as well as disassembly, deconstruction, and decomposition. Operating energy is expended in maintaining the inside environment through processes such as heating and cooling, lighting, and operating appliances

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call