Abstract

Cilia and flagella play key roles in development and sensory transduction, and several human disorders, including polycystic kidney disease, are associated with the failure to assemble cilia. Here, we show that the aurora protein kinase CALK in the biflagellated alga Chlamydomonas has a central role in two pathways for eliminating flagella. Cells rendered deficient in CALK were defective in regulated flagellar excision and regulated flagellar disassembly. Exposure of cells to altered ionic conditions, the absence of a centriole/basal body for nucleating flagellar assembly, cessation of delivery of flagellar components to their tip assembly site, and formation of zygotes all led to activation of the regulated disassembly pathway as indicated by phosphorylation of CALK and the absence of flagella. We propose that cells have a sensory pathway that detects conditions that are inappropriate for possession of a flagellum, and that CALK is a key effector of flagellar disassembly in that pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.